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SELF-SIMILARITY IN THE VAPOUR BUBBLE DYNAMICS 
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Abstract-The covariance of equations governing the homogeneous vapour bubble dynamics with respect 
to the transformation of independent variables is stated. It leads to the self-similar time dependence 
of bubble radius in three cases: (1) when liquid pressure is constant, (2) when it varies with time and 

(3) in an ultrasonic field. This is confirmed by numerical calculations. 

NOMENCLATURE 

bubble radius; 
time derivative of the radius; 
radial coordinate in liquid; 
dimensionless space coordinate; 
time; 
tem~rature of liquid; 
vapour temperature; 
temperature of liquid at infinity; 
thermal conductivity; 
thermal diffusivity; 
latent heat; 
specific heat of saturated vapour; 
liquid density;. 
vapour density; 
ultrasonic frequency; 
number of ultrasonic cycles; 
amplitude of ultrasonic field; 
static pressure of liquid; 
transformation parameters; 
average bubble radius per cycle of 
ultrasound; 
pressure of liquid. 

INTRODUCTION 

THE DEVELOPMENT of the technique of resonance and 
ultrasonic bubble chambers has required the theoretical 
consideration of the dynamics of a vapour bubble in 
liquid. Its behaviour is determined by such nonlinear 
processes as heat and mass transfer at the moving 
vapour-liquid interface, self-frequency pulsations, etc. 
which leads to a necessity of considering the set of 
nonlinear equations [l]. Its analytical solutions can be 
obtained in the simplest cases only [Z, 3). The basic 
results in this range have been obtained by numerical 
methods. Along with advantages this approach has a 
drawback that does not allow one to reveal the general 
properties of solutions. In this paper the property of 
self-similarity is stated for functions describing the 
radial motion of homogeneous vapour bubbles which 
allows one to reduce numerical calculations. 

COLLAPSE OF THE VAPOUR BURBLE IN A LIQUID 
AT CONSTANT PRESSURE 

As is known [2,3], the growth of a vapour bubble 
in a superheated liquid at constant pressure is governed 
mainly by the process of heat transfer between the 
liquid and the bubble, i.e. by the heat diffusion equation 

with the initial and boundary conditions 

T(O, v) = T,(v); R(0) = R. 

T(t, 1) = T’; TQ, 0) = T,, (4) 

By basing on the covariance of equation (1) and 
conditions (2)-(4) with respect to the transformation 
of independent variables 

t+i=mt (5) 

y2 -+ i2 = 131p2 6) 

it has been shown [3] that the growth of a vapour 
bubble at constant pressure in a superheated liquid is 
as follows : 

R’(t) = R’(O)+At (7) 

where A > 0. In this case the solution of equation (1) 
has the self-similar form T(t, v) = T(v). It has been 
shown [4] that the collapse of the vapour bubble at 
constant pressure is determined by relations (l)-(4). 
However, in this case A < 0 and the self-similar tem- 
perature distribution contradicts last ~undary con- 
dition (4) and a solution in a more general form is 
needed. 

In a general case relations (l)-(4) are covariant with 
respect to (5), (6) if the transformed solutions R’(r) and 
r(r, v) are expressed by the original ones as follows: 

R’(t) = mR*(t/m) (8) 

T(t, v) = T(t/m, v). (9) 
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Condition (8) means that the functions R’(t) form 
a single-parameter self-similar family of curves with the 
center of similarity at the beginning of the coordinate 
system. Figure 1 shows the dependences R’(r) de- 
scribing the collapse of bubbles at various initial radii 

in liquid hydrogen obtained by numerical integration 
of (l)-(4). It is seen that the self-similarity does take 

place. It is sufficient that the initial temperature dis- 
tribution T(0, r) can be arbitrary but fixed. 
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FIG. 1. Collapse of vapour bubbles of various 
radii in liquid hydrogen at constant pressure. 

Numerical solutions. 

Consider equations (5) and (8) at the initial moment 
t = 0 and at the end of the bubble collapse r*. 

a’(O) = mR’(O), i* = mt*. (10) 

Excluding the transformation parameter, one obtains 

t* 
I = -&2(O) -* 

R*(O) 
i.e. the bubble life-time is proportional to the initial 
radius squared, that is the result mentioned in 
reference [5]. 

BUBBLE 3EHA~IO~R DURING THE CYCLE OF THE 
CLASSICAL BUBBLE CHAMBER 

In bubble chambers the growth and collapse of 
vapour bubbles occurs at time-dependent pressure. 
Since the pressure changes slowly the inertial effects 

of the liquid can be neglected. Boundary condition (3) 
must be replaced by the following one: 

The expression in the 1.h.s. of equation (12) depends 
upon temperature only. The temperature itself is the 
function of liquid pressure T’ = F(P), where F denotes 
the vapour-liquid equilibrium curve. One can see that 
self-similarity R’(r) takes place if relations (8) and (9) 
are added by the proper pressure transformation 

P(r) = P(t/m). (13) 

The solid curve in Fig. 2 shows the numerical 
solutions obtained with the values of the~odynamical 

T,=26 K, Po-4.1 bor 

Time, ms 

FIG. 2. Dependences R*(t) during 
the cycle of the liquid hydrogen 
bubble chamber at various regimes. 
Solid curve corresponds to experi- 
mental data [6]. Pressure depen- 
dences are shown at the lower pIot. 

parameters which correspond to the working condi- 
tions of the hydrogen bubble chamber [6J Pressure 
variations in the chamber are shown in the lower plot. 

Thedashed curves are numerical solutions correspond- 
ing to the transformed functions with pn = 2 and m = 4. 

It is seen that self-similarity of the functions R’(t) 

takes place indeed and it is of interest to obtain the 
experimental data corresponding to the transformed 
pressure variation P(r). 

SELF-SIMILARITY OF BUBBLE DYNAMICS IN THE 
ULTRASONIC BUBBLE CHAMBER 

The set of equations underlying bubble dynamics 
in the ultrasonic field [l] includes along with (l), (12) 
the Rayleigh equation which takes into account the 
liquid inertia essential in rapid pressure variations. The 
Rayleigh equation is noncovariant with respect to 
transformations (5), (8). 

However, it has been shown that the growth of a 

homogeneous vapour bubble in an underheated liquid 
in the ultrasonic field is determined by the rectified heat 
diffusion [l]. This allows the suggestions that the 
violation of equation covariance and consequently the 
self-similarity of R’(t) are not of importance at low 
frequencies. If liquid inertia is neglected, the vapour 
of pressure equals that of liquid which is determined 
as P = P(f x t). 

Transformations (131 for such a function are as 
follows: 

F(t) = P ; t = P(.ft) 
( > 

r’= .f 
--. 
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separate curves from the universality can be considered 
O-2- as a measure of self-similarity violation of the 

functions R’(t). 
P, =46 bar As it should be expected with the bubble growth, 

the inertia effects become of importance and the self- 

,I 
E 

similarity is violated, the earlier the higher the fre- 
* 1r3- quencies of ultrasound. For sufficiently low frequencies 

l5 
the self-similar behaviour takes place and only one 

Q computer solution is needed to obtain the function 
R*(t) for any frequency. 
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FIG. 3. Vapour bubble behaviour in liquid hydrogen for 
various ultrasonic frequencies. The differences in the 
shape of various curves shows the degree of the violation 

of self-similarity. 

It means that the relationship between the functions 
I?(t) corresponding to the frequencies f and ,i; take 
place which may be easily obtained if one excludes 

3, 

the parameter m from expressions (8) and (15). Passing 
over to time scaling in the cycles of ultrasound, one 
obtains the universal dependence 

F(n) = ,f;ii-‘(n) = fR’(n). (16) 4. 

Figure 3 shows the computed solutions for the 5. 
general system of equations [l] taking into account 
the factors violating the covariance for various fre- 
quencies. The initial radii of bubbles have been chosen 

6, 

to satisfy relation (16). The difference of the shape of 
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